Skip to main content

ChatCloudflareWorkersAI

Workers AI allows you to run machine learning models, on the Cloudflare network, from your own code.

This will help you getting started with Cloudflare Workers AI chat models. For detailed documentation of all ChatCloudflareWorkersAI features and configurations head to the API reference.

Overview​

Integration details​

ClassPackageLocalSerializablePY supportPackage downloadsPackage latest
ChatCloudflareWorkersAI@langchain/cloudflareβŒβœ…βŒNPM - DownloadsNPM - Version

Model features​

See the links in the table headers below for guides on how to use specific features.

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingToken usageLogprobs
βŒβŒβŒβœ…βŒβŒβœ…βŒβŒ

Setup​

To access Cloudflare Workers AI models you’ll need to create a Cloudflare account, get an API key, and install the @langchain/cloudflare integration package.

Credentials​

Head to this page to sign up to Cloudflare and generate an API key. Once you’ve done this, note your CLOUDFLARE_ACCOUNT_ID and CLOUDFLARE_API_TOKEN.

Passing a binding within a Cloudflare Worker is not yet supported.

Installation​

The LangChain ChatCloudflareWorkersAI integration lives in the @langchain/cloudflare package:

yarn add @langchain/cloudflare

Instantiation​

Now we can instantiate our model object and generate chat completions:

import { ChatCloudflareWorkersAI } from "@langchain/cloudflare";

const llm = new ChatCloudflareWorkersAI({
model: "@cf/meta/llama-2-7b-chat-int8", // Default value
cloudflareAccountId: CLOUDFLARE_ACCOUNT_ID,
cloudflareApiToken: CLOUDFLARE_API_TOKEN,
// Pass a custom base URL to use Cloudflare AI Gateway
// baseUrl: `https://gateway.ai.cloudflare.com/v1/{YOUR_ACCOUNT_ID}/{GATEWAY_NAME}/workers-ai/`,
});

Invocation​

const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'I can help with that! The translation of "I love programming" in French is:\n' +
"\n" +
`"J'adore le programmati`... 4 more characters,
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: 'I can help with that! The translation of "I love programming" in French is:\n' +
"\n" +
`"J'adore le programmati`... 4 more characters,
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
}
console.log(aiMsg.content);
I can help with that! The translation of "I love programming" in French is:

"J'adore le programmation."

Chaining​

We can chain our model with a prompt template like so:

import { ChatPromptTemplate } from "@langchain/core/prompts";

const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);

const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "Das Programmieren ist fΓΌr mich sehr Valent sein!",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Das Programmieren ist fΓΌr mich sehr Valent sein!",
name: undefined,
additional_kwargs: {},
response_metadata: {},
tool_calls: [],
invalid_tool_calls: []
}

API reference​

For detailed documentation of all ChatCloudflareWorkersAI features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_cloudflare.ChatCloudflareWorkersAI.html


Was this page helpful?


You can also leave detailed feedback on GitHub.